4.7 Article

Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions

期刊

EXPERIMENTAL NEUROLOGY
卷 271, 期 -, 页码 155-167

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2015.04.025

关键词

Cellular prion protein; Hypoxia; Lactate dehydrogenase; Monocarboxylate transporter 1; Neuroprotection

资金

  1. European Commission [222887, FP7-KBBE-2007-2A]
  2. Robert Koch-Institute through funds of the Federal Ministry of Health [1369-341]

向作者/读者索取更多资源

Although a physiological function of the cellular prion protein (PrPc) is still not fully clarified, a PrPc-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrPc. Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrPc show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrPc was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrPc-overexpression under normoxic conditions. Our data suggest LDH as a direct PrPc interactor with possible physiological relevance under low oxygen conditions. (C) 2015 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据