3.8 Article

Contingency, convergence and hyper-astronomical numbers in biological evolution

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.shpsc.2015.12.014

关键词

Genotype-phenotype maps; Bias in evolution; Arrival of variation; Extended evolutionary synthesis

向作者/读者索取更多资源

Counterfactual questions such as what would happen if you re-run the tape of life? turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype -phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据