4.5 Article

Multi-locus phylogenetics, lineage sorting, and reticulation in Pinus subsection Australes

期刊

AMERICAN JOURNAL OF BOTANY
卷 105, 期 4, 页码 711-725

出版社

WILEY
DOI: 10.1002/ajb2.1052

关键词

coalescence; chloroplast capture; hybrid; incomplete lineage sorting; low-copy nuclear loci; phylogenetic incongruence; Pinaceae; pine; plastome

资金

  1. SEP-CONACYT [CB-2013/221694]

向作者/读者索取更多资源

PREMISE OF THE STUDY: Both incomplete lineage sorting and reticulation have been proposed as causes of phylogenetic incongruence. Disentangling these factors may be most difficult in long-lived, wind-pollinated plants with large population sizes and weak reproductive barriers. METHODS: We used solution hybridization for targeted enrichment and massive parallel sequencing to characterize low-copy-number nuclear genes and high-copy-number plastomes (Hyb-Seq) in 74 individuals of Pinus subsection Australes, a group of -30 New World pine species of exceptional ecological and economic importance. We inferred relationships using methods that account for both incomplete lineage sorting and reticulation. KEY RESULTS: Concatenation- and coalescent-based trees inferred from nuclear genes mainly agreed with one another, but they contradicted the plastid DNA tree in recovering the Attenuatae (the California closed-cone pines) and Oocarpae (the egg-cone pines of Mexico and Central America) as monophyletic and the Australes sensu stricto (the southern yellow pines) as paraphyletic to the Oocarpae.The plastid tree featured some relationships that were discordant with morphological and geographic evidence and species limits. Incorporating gene flow into the coalescent analyses better fit the data, but evidence supporting the hypothesis that hybridization explains the non-monophyly of the Attenuatae in the plastid tree was equivocal. CONCLUSIONS: Our analyses document cytonuclear discordance in Pinus subsection Australes. We attribute this discordance to ancient and recent introgression and present a phylogenetic hypothesis in which mostly hierarchical relationships are overlain by gene flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据