4.6 Article

Absolute stability and spatiotemporal long-range order in Floquet systems

期刊

PHYSICAL REVIEW B
卷 94, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.085112

关键词

-

资金

  1. Princeton Center for Theoretical Science
  2. NSF-DMR [1311781]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1311781] Funding Source: National Science Foundation

向作者/读者索取更多资源

Recent work has shown that a variety of novel phases of matter arise in periodically driven Floquet systems. Among these are many-body localized phases which spontaneously break global symmetries and exhibit novel multiplets of Floquet eigenstates separated by quantized quasienergies. Here we show that these properties are stable to all weak local deformations of the underlying Floquet drives-including those that explicitly break the defining symmetries-and that the models considered until now occupy submanifolds within these larger absolutely stable phases. While these absolutely stable phases have no explicit global symmetries, they spontaneously break Hamiltonian-dependent emergent symmetries, and thus continue to exhibit the novel multiplet structure. The multiplet structure in turn encodes characteristic oscillations of the emergent order parameter at multiples of the fundamental period. Altogether these phases exhibit a form of simultaneous long-range order in space and time which is new to quantum systems. We describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据