4.7 Editorial Material

Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults

期刊

AGING CELL
卷 17, 期 2, 页码 -

出版社

WILEY
DOI: 10.1111/acel.12723

关键词

aging; biguanides; gene expression; metabolism; upstream regulators

资金

  1. Glenn Foundation for Medical Research
  2. Nathan Shock Center of Excellence for the Biology of Aging [P30AG038072]
  3. Einstein-Mount Sinai Diabetes Research Center
  4. NIH [5P60DK20541]
  5. New York State Department of Health
  6. Burroughs Wellcome Fund

向作者/读者索取更多资源

Administration of metformin increases healthspan and lifespan in model systems, and evidence from clinical trials and observational studies suggests that metformin delays a variety of age-related morbidities. Although metformin has been shown to modulate multiple biological pathways at the cellular level, these pleiotropic effects of metformin on the biology of human aging have not been studied. We studied similar to 70-year-old participants (n = 14) in a randomized, double-blind, placebo-controlled, crossover trial in which they were treated with 6 weeks each of metformin and placebo. Following each treatment period, skeletal muscle and subcutaneous adipose tissue biopsies were obtained, and a mixed-meal challenge test was performed. As expected, metformin therapy lowered 2-hour glucose, insulin AUC, and insulin secretion compared to placebo. Using FDR < 0.05, 647 genes were differentially expressed in muscle and 146 genes were differentially expressed in adipose tissue. Both metabolic and nonmetabolic pathways were significantly influenced, including pyruvate metabolism and DNA repair in muscle and PPAR and SREBP signaling, mitochondrial fatty acid oxidation, and collagen trimerization in adipose. While each tissue had a signature reflecting its own function, we identified a cascade of predictive upstream transcriptional regulators, including mTORC1, MYC, TNF, TGF beta 1, and miRNA-29b that may explain tissue-specific transcriptomic changes in response to metformin treatment. This study provides the first evidence that, in older adults, metformin has metabolic and nonmetabolic effects linked to aging. These data can inform the development of biomarkers for the effects of metformin, and potentially other drugs, on key aging pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据