4.5 Article

Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments

期刊

AEROSOL AND AIR QUALITY RESEARCH
卷 18, 期 3, 页码 565-578

出版社

TAIWAN ASSOC AEROSOL RES-TAAR
DOI: 10.4209/aaqr.2017.10.0418

关键词

Field calibration; Fine particulate matter; SHINYEI; Low-cost sensor

资金

  1. NSF PIRE [1243535]
  2. EPA Star grant [R83503901]

向作者/读者索取更多资源

Detailed quantification of the spatial and temporal variability of ambient fine particulate matter (PM2.5) has, to date, been limited due to the cost and logistics involved with traditional monitoring approaches. New miniaturized particle sensors are a potential strategy to gather more time-and spatially-resolved data, to address data gaps in regions with limited monitoring and to address important air quality research priorities in a more cost-effective manner. This work presents field evaluations and lab testing of three models of low-cost (< $200) PM sensors (SHINYEI: models PPD42NS, PPD20V, PPD60PV) in three locations: urban background (average PM2.5: 8 mu g m(-3)) and roadside in Atlanta, Georgia, USA (average PM2.5: 21 mu g m(-3)), and a location with higher ambient concentrations in Hyderabad, India (average PM2.5: 72 mu g m(-3)). Sensor measurements were compared against reference monitors in the lab using one-minute averages and in field locations using one-hour averages. At the Atlanta sites the sensors were weakly correlated with a tapered element oscillating microbalance (TEOM) at best (R-2 <= 0.30). In Hyderabad, the PPD20V sensors had the highest correlation with the environmental beta attenuation monitor (E-BAM) (R-2 > 0.80), however the same sensors had poor agreement if the comparison was restricted to lower concentrations (R-2 = similar to 0, < 40 mu g m(-3)). The results of this work indicate the potential usefulness of these sensors, including the PPD20V, for higher concentration applications (< similar to 250 mu g m(-3)). These field-testing results provide important insights into the varying performance of low-cost PM sensors under highly contrasting atmospheric conditions. The inconsistent performance results underscore the need for rigorous evaluation of optical particle sensors in the laboratory and in diverse field environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据