4.7 Article

Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity

期刊

ADVANCED POWDER TECHNOLOGY
卷 29, 期 1, 页码 142-156

出版社

ELSEVIER
DOI: 10.1016/j.apt.2017.10.021

关键词

Nanofluid; Two-phase; Porous fin; Natural convection; Entropy generation

向作者/读者索取更多资源

In the present study, natural convection of Cu-water nanofluid in a cavity with an array of porous fins on its hot wall has been numerically analyzed using two-phase approach. Use of porous fins, instead of solid ones, improves conduction while could have negligible effect on convection as flow can pass through them. Therefore, the effects of the number of fins and their length on heat transfer enhancement and entropy generation are scrutinized. The study has been conducted for the certain pertinent parameters of Rayleigh number (Ra = 10(4) to 10(6)), Darcy number (Da = 10(-1) to 10(-4)), and the nanoparticle volume fraction (phi = 0 to 0: 04) and results are investigated in terms of heat transfer, entropy generation and performance coefficient (PEC). Numerical results indicate that adding porous fins with a high Darcy number improves heat transfer while fins with a low Darcy number can weaken the convection and decline Nusselt number. In strong flow fields an increase in either the length or the number of fins has insignificant effect on Nu. Also, low concentration of nanoparticles enhances the heat transfer more than high values of nanoparticles. On the other hand, entropy generation decreases by increasing the number of fins and PEC enhances by using porous fins in most of the studied cases. PEC of pure fluid is higher than the nanofluid at low Ra numbers, while opposite fact is observed for high Ra values. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据