4.8 Article

Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy

期刊

ADVANCED MATERIALS
卷 30, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201800754

关键词

2D; anisotropy; black arsenic; layered semiconductors

资金

  1. National Science Foundation [DMR-1708448]
  2. China Scholarship Council (CSC) [201306375019]
  3. National Natural Science Foundation of China [11674400, 61775241, 61622406, 11674310]
  4. Natural Science Foundation of Hu-nan Province of China [2018JJ2511]
  5. Innovation-driven Project of CSU [2017XC019]
  6. Centre National de la Recherche Scientique (CNRS)
  7. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), France

向作者/读者索取更多资源

2D layered materials have emerged in recent years as a new platform to host novel electronic, optical, or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Black phosphorus, for example, is a 2D material that has such in-plane anisotropy. Here, a rare chemical form of arsenic, called black-arsenic (b-As), is reported as a cousin of black phosphorus, as an extremely anisotropic layered semiconductor. Systematic characterization of the structural, electronic, thermal, and electrical properties of b-As single crystals is performed, with particular focus on its anisotropies along two in-plane principle axes, armchair (AC) and zigzag (ZZ). The analysis shows that b-As exhibits higher or comparable electronic, thermal, and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in-plane anisotropies can potentially implement novel ideas for scientific research and device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据