4.8 Article

Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors

期刊

ADVANCED MATERIALS
卷 30, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201800613

关键词

chlorination; cost; nonfullerene acceptors; organic solar cells; ternary solar cells

资金

  1. National Natural Science Foundation of China [91333204, 91633301, 51673201]
  2. Ministry of Science and Technology of China [2014CB643501]
  3. Chinese Academy of Sciences [XDB12030200, KJZD-EW-J01]

向作者/读者索取更多资源

To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small-molecule acceptors, IT-2Cl and IT-4Cl, is designed and synthesized by introducing easy-synthesis chlorine substituents onto the indacenodithieno[3,2-b]thiophene units. The unique feature of the large dipole moment of the C-Cl bond enhances the intermolecular charge-transfer effect between the donor-acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C-Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low-lying highest occupied molecular orbital level. In addition, since IT-2Cl and IT-4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据