4.8 Article

Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy

期刊

ADVANCED MATERIALS
卷 30, 期 35, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201801418

关键词

additive; dimethyl sulfide; flexible; grain size; perovskite solar cell

资金

  1. National Key Research Program of China [2016YFA0202403]
  2. National Natural Science Foundation of China [61604090/91733301]
  3. National University Research Fund [GK261001009]
  4. 111 Project [B14041]
  5. Shaanxi Technical Innovation Guidance Project [2018HJCG-17]
  6. Chinese National 1000-Talent-Plan program
  7. [IRT_14R33]

向作者/读者索取更多资源

Even though the power conversion efficiency (PCE) of rigid perovskite solar cells is increased to 22.7%, the PCE of flexible perovskite solar cells (F-PSCs) is still lower. Here, a novel dimethyl sulfide (DS) additive is developed to effectively improve the performance of the F-PSCs. Fourier transform infrared spectroscopy reveals that the DS additive reacts with Pb2+ to form a chelated intermediate, which significantly slows down the crystallization rate, leading to large grain size and good crystallinity for the resultant perovskite film. In fact, the trap density of the perovskite film prepared using the DS additive is reduced by an order of magnitude compared to the one without it, demonstrating that the additive effectively retards transformation kinetics during the thin film formation process. As a result, the PCE of the flexible devices increases to 18.40%, with good mechanical tolerance, the highest reported so far for the F-PSCs. Meanwhile, the environmental stability of the F-PSCs significantly enhances by 1.72 times compared to the device without the additive, likely due to the large grain size that suppresses perovskite degradation at grain boundaries. The present strategy will help guide development of high efficiency F-PSCs for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据