4.8 Article

Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control

期刊

ADVANCED MATERIALS
卷 30, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201704876

关键词

calcium phosphate; citrate; collagen; interface wetting; mineralization

资金

  1. National Natural Science Foundation of China [21625105, 21471129]
  2. Zhejiang Provincial Natural Science Foundation of China [LY17B010001]
  3. Fundamental Research Funds for Central Universities [2016QN81020]

向作者/读者索取更多资源

Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic-organic composite. It is demonstrated experimentally that only collagen fibrils containing approximate to 8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据