4.8 Review

Silica-Coated Plasmonic Metal Nanoparticles in Action

期刊

ADVANCED MATERIALS
卷 30, 期 27, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201707003

关键词

core-shell colloids; nanoparticle catalysis; plasmon-enhanced solar cells; plasmonic sensing; theranostics

资金

  1. Spanish MINECO [MAT2013-46101-R, MAT2017-86659-R]
  2. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据