4.8 Article

Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control

期刊

ADVANCED MATERIALS
卷 30, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201705968

关键词

bacterial biofilms; curli nanofibers; dynamic self-assembly; functional amyloids; light-induced gene circuits

资金

  1. Commission for Science and Technology of Shanghai Municipality [17JC1403900]
  2. Dawn Program of Shanghai Education Commission, China [14SG56]
  3. National Natural Science Foundation of China [U1532127, 31570972]
  4. ShanghaiTech University
  5. 1000 Youth Talents Program - Chinese Central Government

向作者/读者索取更多资源

Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 mu m are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据