4.8 Article

Bioinspired Photonic Pigments from Colloidal Self-Assembly

期刊

ADVANCED MATERIALS
卷 30, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201706654

关键词

bioinspired; colloids; photonic pigments; self-assembly; structural color

资金

  1. Elite Network Bavaria via the international Master's Programme in Advanced Materials and Processes
  2. Hans Bockler Foundation (HBS)
  3. Deutsche Forschungsgemeinschaft (DFG) [VO 1824/7-1]
  4. Cluster of Excellence Engineering of Advanced Materials (EAM)
  5. Interdisciplinary Center for Functional Particle Systems (FPS) at Friedrich-Alexander University Erlangen-Nurnberg

向作者/读者索取更多资源

The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据