4.8 Article

True Low-Power Self-Locking Soft Actuators

期刊

ADVANCED MATERIALS
卷 30, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201706547

关键词

actuators; electro-active polymers; light-active polymers; low-power consumption; self-locking motion

资金

  1. Samsung Research Funding Center of Samsung Electronics [SRFC-MA1402-08]

向作者/读者索取更多资源

Natural double-layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self-organized bending behavior in response to environmental stimuli. Herein, light- and electro-active polymer (LEAP) based actuators with a double-layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro-active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self-locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm(-2) of energy to hold an object for 15min at an operating voltage of 3 V. These novel self-locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据