4.8 Article

Highly Efficient Nonfullerene Polymer Solar Cells Enabled by a Copper(I) Coordination Strategy Employing a 1,3,4-Oxadiazole-Containing Wide-Bandgap Copolymer Donor

期刊

ADVANCED MATERIALS
卷 30, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201800737

关键词

1,3,4-oxadiazole; copper(I) coordination strategy; morphology optimization; nonfullerene polymer solar cells; wide-bandgap copolymer

资金

  1. NSFC [51573107, 91633301, 21432005]
  2. Foundation of State Key Laboratory of Polymer Materials Engineering [sklpme2017-2-04]
  3. Fundamental Research Funds for the Central Universities [2012017yjsy109]

向作者/读者索取更多资源

A novel wide-bandgap copolymer of PBDT-ODZ based on benzo[1,2-b:4,5-b]dithiophene (BDT) and 1,3,4-oxadiazole (ODZ) blocks is developed for efficient nonfullerene polymer solar cells (NF-PSCs). PBDT-ODZ exhibits a wide bandgap of 2.12 eV and a low-lying highest occupied molecular orbital (HOMO) level of -5.68 eV, which could match well with the low-bandgap acceptor of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylthienyl)-dithieno[2,3-d:2,3-d]-s-indaceno[1,2-b:5,6-b]-dithiophene (ITIC-Th), inducing a good complementary absorption from 300 to 800 nm and a minimal HOMO level offset (0.1 eV). The PBDT-ODZ:ITIC-Th devices exhibit a large open-circuit voltage (V-oc) of 1.08 eV and a low energy loss (E-loss) of 0.50 eV, delivering a high power conversion efficiency (PCE) of 10.12%. By adding a small amount of copper(I) iodide (CuI) as an additive to form coordination complexes in the active blends, much higher device performances are achieved due to the improved absorption and crystallinity. After incorporating 4% of CuI, the PCE is elevated to 12.34%, with a V-oc of 1.06 V, a J(sc) of 17.1 mA cm(-2) and a fill factor of 68.1%. This work not only provides a novel oxadiazole-containing wide-bandgap polymeric donor candidate for high-performance NF-PSCs but also presents an efficient morphology-optimization approach to elevate the PCE of NF-PSCs for future practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据