4.8 Article

Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures

期刊

ADVANCED MATERIALS
卷 30, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201801956

关键词

catalysts; fuel cells; hollow nanocrystals; nanocages; oxygen reduction reaction

资金

  1. National Science Foundation [CHE-1505441, DMR-1505400, CMMI-1634687]
  2. Georgia Institute of Technology

向作者/读者索取更多资源

Recent developments of a novel class of catalytic materials built on hollow nanocrystals having ultrathin, porous walls, and well-controlled surface structures are discussed, with a focus on platinum and the oxygen reduction reaction (ORR). An introduction is given to the critical role of platinum in the proton exchange membrane fuel cells, and the pressing need to develop a strategy for achieving cost-effective and sustainable use of this precious metal. How to maximize the mass activity of ORR catalysts based on platinum by rationally engineering the surface structure while increasing the utilization efficiency of atoms is then discussed. After reporting on the synthetic methods involving galvanic replacement and seed-mediated growth followed by etching, respectively, a number of examples to demonstrate the enhancement in activity and durability for this new class of catalytic materials are showcased. The feasibility to have the methodology extended from platinum to other precious metals such as gold and ruthenium is highlighted. In conclusion, some of the remaining issues and emerging solutions are examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据