4.8 Article

Oscillating Chiral-Nematic Fingerprints Wipe Away Dust

期刊

ADVANCED MATERIALS
卷 30, 期 11, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201704970

关键词

dynamic surface topography; electric responsive coating; liquid crystal networks; self-cleaning surfaces

资金

  1. European Research Commission under ERC Advanced Grant [66999]
  2. NWO VENI grant [15135]
  3. Guangdong Innovative Research Team Program [2013C102]

向作者/读者索取更多资源

This work presents an approach to create mechanical undulations at a solid organic coating surface under the influence of an electric field. The coating is fabricated through polymerization of chiral reactive mesogens aligned in their fingerprint mode on top of interdigitated electrodes. The fingerprint mode gives a corrugation of the surface perpendicular to the helix axes. When a lateral alternating electric field is applied, the order parameter of the helicoidally packed mesogens is reduced. This simultaneously leads to an inversion of the fingerprint heights, an overall thickness increase, and a chaotic and fast surface oscillation. These three effects work in concert stimulating wavy deformation figures at the coating surface. The process is fast and reversible; the dynamics of the topographic textures stop immediately when the electric field is switched off. The continuous generation of surface undulations sustains transport of species at the coating surface. It removes dust and debris providing an active dust control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据