4.8 Review

Under Diffusion Control: from Structuring Matter to Directional Motion

期刊

ADVANCED MATERIALS
卷 30, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201707029

关键词

hierarchical morphogenesis; reaction-diffusion systems; self-organization; spatio-temporal patterns; systems chemistry

资金

  1. Freie Universitat Berlin
  2. Northwestern Polytechnical University Xi'an
  3. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Self-organization in synthetic chemical systems is quickly developing into a powerful strategy for designing new functional materials. As self-organization requires the system to exist far from thermodynamic equilibrium, chemists have begun to go beyond the classical equilibrium self-assembly that is often applied in bottom-up supramolecular synthesis, and to learn about the surprising and unpredicted emergent properties of chemical systems that are characterized by a higher level of complexity and extended reactivity networks. The present review focuses on self-organization in reaction-diffusion systems. Selected examples show how the emergence of complex morphogenesis is feasible in synthetic systems leading to hierarchically and nanostructured matter. Starting from well-investigated oscillating reactions, recent developments extend diffusion-limited reactivity to supramolecular systems. The concept of dynamic instability is introduced and illustrated as an additional tool for the design of smart materials and actuators, with emphasis on the realization of motion even at the macroscopic scale. The formation of spatio-temporal patterns along diffusive chemical gradients is exploited as the main channel to realize symmetry breaking and therefore anisotropic and directional mechanical transformations. Finally, the interaction between external perturbations and chemical gradients is explored to give mechanistic insights in the design of materials responsive to external stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据