4.8 Article

Sulfate-Assisted Interfacial Engineering for High Yield and Efficiency of Triple Cation Perovskite Solar Cells with Alkali-Doped TiO2 Electron-Transporting Layers

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 14, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201706287

关键词

alkali doping; high-efficiency solar cells; interface engineering; mixedcation perovskite

资金

  1. Japan Society for the Promotion of Science (JSPS)
  2. Merck KGaA Darmstadt
  3. University of Cologne
  4. Japan Science and Technology Agency (JST), Advanced Low Carbon Technology R&D program (ALCA)
  5. Japanese Society for Promotion of Science (JSPS) [26289265]
  6. Grants-in-Aid for Scientific Research [26289265] Funding Source: KAKEN

向作者/读者索取更多资源

Facile electron injection and extraction are two key attributes desired in electron transporting layers to enhance the efficiency of planar perovskite solar cells. Herein it is demonstrated that the incorporation of alkali metal dopants in mesoporous TiO2 can effectively modulate electronic conductivity and improve the charge extraction process by counterbalancing oxygen vacancies acting as nonradiative recombination centers. Moreover, sulfate bridges (SO42-) grafted on the surface of K-doped mesoporous titania provide a seamless integration of absorber and electron-transporting layers that accelerate overall transport kinetics. Potassium doping markedly influences the nucleation of the perovskite layer to produce highly dense films with facetted crystallites. Solar cells made from K:TiO2 electrodes exhibit power conversion efficiencies up to 21.1% with small hysteresis despite all solution coating processes conducted under ambient air conditions (controlled humidity: 25-35%). The higher device efficiencies are attributed to intrinsically tuned electronic conductivity and chemical modification of grain boundaries enabling uniform coverage of perovskite films with large grain size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据