4.6 Article

Ultracold bosons with cavity-mediated long-range interactions: A local mean-field analysis of the phase diagram

期刊

PHYSICAL REVIEW A
卷 94, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.94.033607

关键词

-

资金

  1. German Research Foundation (DACH project, Quantum Crystals of Photons and Atoms)

向作者/读者索取更多资源

Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density modulation at the cavity-mode wavelength that competes with the optical lattice arrangement. Simultaneously short-range interactions via particle hopping promote superfluid order such that a variety of structural and quantum coherent phases can occur. We analyze the emerging phase diagram in two dimensions by means of an extended Bose-Hubbard model using a local mean-field approach combined with a superfluid cluster analysis. For commensurate ratios of the cavity and external lattice wavelengths, the Mott insulator-superfluid transition is modified by the appearance of charge density wave and supersolid phases, at which the atomic density supports the buildup of a cavity field. For incommensurate ratios, the optomechanical forces induce the formation of Bose-glass and superglass phases, namely, nonsuperfluid and superfluid phases, respectively, displaying quasiperiodic density modulations, which in addition can exhibit structural and superfluid stripe formation. The onset of such structures is constrained by the on-site interaction and is favorable at fractional densities. Experimental observables are identified and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据