4.8 Article

Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li-S Battery

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 34, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201802244

关键词

flexible freestanding electrodes; lithium-sulfur batteries; phase inversion; polyethersulfone; polysulfide-modified electrolytes

资金

  1. KAUST

向作者/读者索取更多资源

Development of flexible and freestanding electrode is attracting great attention in lithium-sulfur (Li-S) batteries, but the severe capacity fading caused by the lithium polysulfides (PSs) shuttle effect remains challenging. Herein, a completely new polymeric binder of polyethersulfone is introduced. Not only it enables massive production of flexible/current-free electrode by a novel concept of phase-inversion approach but also the resultant polymeric networks can effectively trap the soluble polysulfides within the electrode, owing to the higher hydrophilicity and stronger affinity properties than the routine polyvinylidene fluoride. Coupling with polysulfide-based electrolyte, the Li-S cell shows a higher capacity of 1141 mAh g(-1), a lower polarization of 192 mV, and a more stable capacity retention with 100% Coulombic efficiency over 100 cycles at 0.25C. The advantages of favored binder and electrolyte are further demonstrated in lithium-ion sulfur full battery with lithiated graphite anode, which demonstrates much improved performance than those previously reported. This work not only introduces a novel strategy for flexible freestanding electrodes but also enlightens the importance of coupling electrodes and electrolytes to higher performances for Li-S battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据