4.8 Article

Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201800228

关键词

biosilica; cell alignment; inkjet printing; micropatterns; site-specific biomineralization

资金

  1. National Institutes of Health [R01DE016525, R01AR068048, U01EB014976]
  2. Air Force Office of Scientific Research [FA9550-17-1-0333]
  3. ONR [N000141310596]

向作者/读者索取更多资源

Well-designed micropatterns present in native tissues and organs involve changes in extracellular matrix compositions, cell types and mechanical properties to reflect complex biological functions. However, the design and fabrication of these micropatterns in vitro to meet task-specific biomedical applications remains a challenge. A de novo design strategy to code and synthesize functional micropatterns is presented to engineer cell alignment through the integration of aqueous-peptide inkjet printing and site-specific biomineralization. The inkjet printing provides direct writing of macroscopic biosilica selective peptide-R5 patterns with micrometer-scale resolution on the surface of a biopolymer (silk) hydrogel. This is combined with in situ biomineralization of the R5 peptide for site-specific growth of silica nanoparticles on the micropatterns, avoiding the use of harsh chemicals or complex processing. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin. This combination of peptide printing and site-specific biomineralization provides a new route for developing cost-effective micropatterns, with implications for broader materials designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据