4.8 Article

Miniature Soft Electromagnetic Actuators for Robotic Applications

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201800244

关键词

gallium indium alloys; high thermal conductivity; miniature grippers; soft electromagnetic actuators; soft polymers; soft tactile actuators

资金

  1. National Science Foundation [NSF-1628831, NSF-1623459]

向作者/读者索取更多资源

Electromagnetic actuators (EMAs) serve the majority of motion control needs in fields ranging from industrial robotics to automotive systems and biomedical devices, due to their unmatched combination of speed, precision, force, and scalability. This paper describes the design and fabrication of miniature soft EMAs that operate based on the Lorentz force principle. The actuators are fabricated from silicone polymer, liquid metal (LM) alloy (eutectic gallium indium, EGaIn), and magnetic (NdFeB) powder. They are small, intrinsically deformable, and can be fabricated using simple techniques. The central elements of the actuators are fine, 3D helical coil conductors, which are used as electromagnetic inductors. The coils are formed from stretchable filaments that are filled with a LM alloy. To achieve high power densities, the filaments themselves may be fabricated from colloids of EGaIn microdroplets in a silicone polymer matrix, allowing them to dissipate heat and accommodate high currents, and thus high forces. Millimeter-scale cylindrical actuators are demonstrated for linear high frequency motion and articulated devices for bending motion. These actuators are applied in a vibrotactile feedback display and in a miniature soft robotic gripper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据