4.8 Article

Mechanical Strain-Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 10, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201705928

关键词

CuFe2O4; epitaxial thin films; ferromagnetic resonance; flexible electronics

资金

  1. National 973 projects of China [2015CB654603, 2015CB654903]
  2. Fundamental Research Funds for the Central University
  3. Research Grants Council of the Hong Kong SAR [N_HKUST605/16]
  4. National Natural Science Foundation of China [51390472, 61631166004, 51202185, 61471290]

向作者/读者索取更多资源

Purely mechanical strain-tunable microwave magnetism device with lightweight, flexible, and wearable is crucial for passive sensing systems and spintronic devices (noncontact), such as flexible microwave detectors, flexible microwave signal processing devices, and wearable mechanics-magnetic sensors. Here, a flexible microwave magnetic CuFe2O4 (CuFO) epitaxial thin film with tunable ferromagnetic resonance (FMR) spectra is demonstrated by purely mechanical strains, including tensile and compressive strains, on flexible fluorophlogopite (Mica) substrates. Tensile and compressive strains show remarkable tuning effects of up-regulation and down-regulation on in-plane FMR resonance field (H-r), which can be used for flexible tunable resonators and filters. The out-of-plane FMR spectra can also be tuned by mechanical bending, including H-r and absorption peak. The change of out-of-plane FMR spectra has great potential for flexible mechanics-magnetic deformation sensors. Furthermore, a superior microwave magnetic stability and mechanical antifatigue character are obtained in the CuFO/Mica thin films. These flexible epitaxial CuFO thin films with tunable microwave magnetism and excellent mechanical durability are promising for the applications in flexible spintronics, microwave detectors, and oscillators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据