4.3 Article

Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b

期刊

FEMS MICROBIOLOGY LETTERS
卷 363, 期 13, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/femsle/fnw129

关键词

methanotrophy; methanol dehydrogenase; methane monooxygenase; rare earth elements; copper

资金

  1. Office of Science (Biological and Environmental Research), US Department of Energy [DE-SC0006630]
  2. U.S. Department of Energy (DOE) [DE-SC0006630] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-MeDH), and the expression of these two forms is regulated by the availability of the rare earth element (REE), cerium. Here, we extend these studies and show that lanthanum, praseodymium, neodymium and samarium also regulate expression of alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-MeDH was knocked out, was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet unknown mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据