4.2 Article

Toward synthesis of oxide films on graphene with sputtering based processes

期刊

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/1.4949565

关键词

-

资金

  1. Knut and Alice Wallenberg Foundation [2011.0082]
  2. Swedish Research Council [2014-5591]

向作者/读者索取更多资源

The impact of energetic particles associated with a sputter deposition process may introduce damage to single layer graphene films, making it challenging to apply this method when processing graphene. The challenge is even greater when oxygen is incorporated into the sputtering process as graphene can be readily oxidized. This work demonstrates a method of synthesizing ZnSn oxide on graphene without introducing an appreciable amount of defects into the underlying graphene. Moreover, the method is general and applicable to other oxides. The formation of ZnSn oxide is realized by sputter deposition of ZnSn followed by a postoxidation step. In order to prevent the underlying graphene from damage during the initial sputter deposition process, the substrate temperature is kept close to room temperature, and the processing pressure is kept high enough to effectively suppress energetic bombardment. Further, in the subsequent postannealing step, it is important not to exceed temperatures resulting in oxidation of the graphene. The authors conclude that postoxidation of ZnSn is satisfactorily performed at 300 degrees C in pure oxygen at reduced pressure. This process results in an oxidized ZnSn film while retaining the initial quality of the graphene film. (C) 2016 American Vacuum Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据