4.8 Article

Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration

期刊

ACTA BIOMATERIALIA
卷 77, 期 -, 页码 127-141

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2018.07.031

关键词

Cartilage; Regeneration; Chondrocyte; Stem cell; Tissue engineering

资金

  1. National Key Research and Development Program of China [2016YFC1102104-1]
  2. National Natural Science Foundation of China [81572148]
  3. Beijing Municipal Science and Technology Project [Z161100005016059]
  4. People's Liberation Army 12th 5-year plan period project [BWS11J025]

向作者/读者索取更多资源

We developed a promising cell carrier prepared from articular cartilage slices, designated cartilage extra cellular matrix (ECM)-derived particles (CEDPs), through processes involving physical pulverization, size screening, and chemical decellularization. Rabbit articular chondrocytes (ACs) or adipose-derived stem cells (ASCs) rapidly attached to the surface of the CEDPs and proliferated with high cell viability under microgravity (MG) condition in a rotary cell culture system (RCCS) or static condition. Gene profiling results demonstrated that ACs expanded on CEDPs exhibited significantly enhanced chondrogenic phenotypes compared with monolayer culture, and that ASCs differentiated into a chondrogenic phenotype without the use of exogenous growth factors. Moreover, MG culture conditions in a RCCS bioreactor were superior to static culture conditions in terms of maintaining the chondrogenic phenotype of ACs and inducing ACS chondrogenesis. With prolonged expansion, functional microtissue aggregates of AC- or ASC-laden CEDPs were formed. Further, AC- or ASC-based microtissues were directly implanted in vivo to repair articular osteochondral defects in a rabbit model. Histological results, biomechanical evaluations, and radiographic assessments indicated that AC- and ASC-based microtissues displayed equal levels of superior hyaline cartilage repair, whereas the other two treatment groups, in which osteochondral defects were treated with CEDPs alone or fibrin glue, exhibited primarily fibrous tissue repair. These findings provide an alternative method for cell culture and stem cell differentiation and a promising strategy for constructing tissue-engineered cartilage microtissues for cartilage regeneration. Statement of Significance Despite the remarkable progress in cartilage tissue engineering, cartilage repair still remains elusive. In the present study, we developed a cell carrier, namely cartilage extracellular matrix-derived particles (CEDPs), for cell proliferation of articular chondrocytes (ACs) and adipose-derived stem cells (ASCs), which improved the maintenance of chondrogenic phenotype of ACs, and induced chondrogenesis of ASCs. Moreover, the functional microtissue aggregates of AC- or ASC-laden CEDPs induced equal levels of superior hyaline cartilage repair in a rabbit model. Therefore, our study demonstrated an alternative method for chondrocyte culture and stem cell differentiation, and a promising strategy for constructing tissue-engineered cartilage microtissues for in vivo articular cartilage repair and regeneration. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据