4.8 Article

Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy

期刊

ACTA BIOMATERIALIA
卷 66, 期 -, 页码 310-324

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2017.11.010

关键词

Nanoparticle; Breast cancer; Targeting; Immunotherapy; Chemotherapy

资金

  1. National Natural Science Foundation of China [81602724, 81573005, 81371671]
  2. National High-tech R&D Program of China (863 Program) [2015AA020403]
  3. Tianjin 13th five year and TMU talent project [2016K10308]
  4. National Key Scientific Instrument and Equipment Development Project [2013YQ16055106]

向作者/读者索取更多资源

In the present study, a dual pH-responsive multifunctional nanoparticle system was designed for combining immunotherapy and chemotherapy to treat breast cancer through targeting immune cells and cancer cells. A proven anti-tumor immune regulator, R848, was encapsulated with poly(L-histidine) (PHIS) to form PHIS/R848 nanocores. Doxorubicin (DOX) was conjugated to hyaluronic acid (HA) through an acid-cleavable hydrazone bond linkage to synthesize polymeric prodrug HA-DOX, which was subsequently coated outside PHIS/R848 nanocores to form HA-DOX/PHIS/R848 nanoparticles. Ionization of PHIS around pH 6.5 (a pH value close to that of tumor microenvironment) switched the nature of this material from hydrophobic to hydrophilic, and thus triggered the release of R848 to exert immunoregulatory action. The rupture of hydrazone bond in HA-DOX at about pH 5.5 (pH of endo/lysosomes) accelerated the release of DOX to exert cytotoxic effects. In immune cells, PHIS/R848 nanocores exhibited strong immunoregulatory activities similar to those induced by free R848. In breast cancer cells overexpressing CD44, HA-DOX was specially internalized by CD44-mediated endocytosis and significantly inhibited the cell growth. In 4T1 tumor-bearing mice, HA-DOX/PHIS/R848 nanoparticles showed excellent tumor-targeting ability and remarkably inhibited the tumor growth by regulating tumor immunity and killing tumor cells. In summary, this multifunctional nanoparticle system could deliver R848 and DOX respectively to tumor microenvironment and breast cancer cells to achieve synergistic effects of immunotherapy and chemotherapy against breast cancer. Statement of Significance Combination of immunotherapy and chemotherapy is becoming a promising new treatment for cancer. The major challenge is to target cancer and immune cells simultaneously and specifically. In this study, a dual pH-responsive multifunctional nanoparticle system based on poly(L-histidine) and hyaluronic acid was designed for co-loading R848 (immune-regulator) and doxorubicin (chemotherapeutic drug) through different encapsulation modes. By responding to the acidic pHs of tumor microenvironment and intracellular organelles, this multifunctional nanoparticle system could release R848 extracellularly and deliver DOX targetedly to breast cancer cells, thus achieving synergistic effects of immunotherapy and chemotherapy against breast cancer. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据