4.8 Article

Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water

期刊

ACS NANO
卷 12, 期 1, 页码 568-575

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b07377

关键词

electrostatic self-assembly; copper indium sulfide; nanocrystals; artificial photosynthesis; photoredox catalysis

资金

  1. Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-DE-SC0000989]
  2. National Science Foundation [CHE-1664184]
  3. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF ECCS-1542205]
  4. MRSEC program at the Materials Research Center [NSF DMR-1121262]
  5. International Institute for Nanotechnology (IIN)
  6. Keck Foundation
  7. State of Illinois, through the IIN
  8. DOE Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

This paper describes the use of electrostatic assemblies of negatively charged colloidal CuInS2/ZnS quantum dot (QD) sensitizers and positively charged, trimethylamino-functionalized iron tetraphenylporphyrin catalysts (FeTMA) to photoreduce CO2 to CO in water upon illumination with 450 nm light. This system achieves a turnover number (TON) of CO (per FeTMA) of 450 after 30 h of illumination, with a selectivity of 99%. Its sensitization efficiency (TON per Joule of photons absorbed) is a factor of 11 larger than the previous record for photosensitization of an iron porphyrin catalyst for this reaction, held by a system in which both QDs and metal porphyrin were uncharged. Steady-state and lime-resolved optical spectroscopy provides evidence for electrostatic assembly of QDs and FeTMA. Control of the size of the assemblies with addition of a screening counterion, K+, and a correlation between their measured size and their catalytic activity, indicates that the enhancement in performance of this system over the analogous uncharged system is due to the proximity of the FeTMA catalyst to multiple light-absorbing QDs and the selective formation of QD-FeTMA contacts (rather than QD-QD or FeTMA-FeTMA contacts). This system therefore shows the ability to funnel photoinduced electrons to a reaction center, which is crucial for carrying out reactions that require multistep redox processes under low photon flux, and thus is an important advance in developing artificial photocatalytic systems that function in natural light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据