4.8 Article

Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors

期刊

ACS NANO
卷 12, 期 2, 页码 965-975

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b07059

关键词

two-dimensional materials; transition metal dichalcogenides; tungsten diselenide (WSe2); metal-organic chemical vapor deposition (MOCVD); van der Waals epitaxy; field-effect transistors

资金

  1. NSF under the US/Ireland UNITE collaboration [1407765]
  2. Center for Low Energy Systems Technology (LEAST)
  3. National Science Foundation (NSF) [DMR 1609060]
  4. Southwest Academy on Nanoelectronics (SWAN) - Nanoelectronic Research Initiative
  5. MARCO
  6. NIST
  7. DARPA
  8. Center for Atomically Thin Multifunctional Coatings - National Science Foundation (NSF) division of Industrial, Innovation & Partnership (HP) [1540018]
  9. 2DCC-MIP through NSF [DMR-1539916]
  10. Directorate For Engineering
  11. Div Of Electrical, Commun & Cyber Sys [1407765] Funding Source: National Science Foundation
  12. Directorate For Engineering
  13. Div Of Industrial Innovation & Partnersh [1540018] Funding Source: National Science Foundation

向作者/读者索取更多资源

Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (similar to 10(7)), high current density (1-10 mu A.mu m(-1)), and good field-effect transistor mobility (similar to 30 cm(2).V-1.s(-1)) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据