4.8 Article

Below the Hall-Petch Limit in Nanocrystalline Ceramics

期刊

ACS NANO
卷 12, 期 4, 页码 3083-3094

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b07380

关键词

nanocrystalline; ceramic; MgAl2O4; spinel; Hall-Petch; energy dissipation; indentation

资金

  1. ONR [30]

向作者/读者索取更多资源

Reducing the grain size of metals and ceramics can significantly increase strength and hardness, a phenomenon described by the Hall-Petch relationship. The many studies on the Hall-Petch relationship in metals reveal that when the grain size is reduced to tens of nanometers, this relationship breaks down. However, experimental data for nanocrystalline ceramics are scarce, and the existence of a breakdown is controversial. Here we show the Hall-Petch breakdown in nanocrystalline ceramics by performing indentation studies on fully dense nanocrystalline ceramics fabricated with grain sizes ranging from 3.6 to 37.5 nm. A maximum hardness occurs at a grain size of 18.4 nm, and a negative (or inverse) Hall-Petch relationship reduces the hardness as the grain size is decreased to around 5 nm. At the smallest grain sizes, the hardness plateaus and becomes insensitive to grain size change. Strain rate studies show that the primary mechanism behind the breakdown, negative, and plateau behavior is not diffusion-based. We find that a decrease in density and an increase in dissipative energy below the breakdown correlate with increasing grain boundary volume fraction as the grain size is reduced. The behavior below the breakdown is consistent with structural changes, such as increasing triple-junction volume fraction. Grain- and indent-size-dependent fracture behavior further supports local structural changes that corroborate current theories of nanocrack formation at triple junctions. The synergistic grain size dependencies of hardness, elasticity, energy dissipation, and nanostructure of nanocrystalline ceramics point to an opportunity to use the grain size to tune the strength and dissipative properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据