4.8 Article

Efficient n-Doping and Hole Blocking in Single-Walled Carbon Nanotube Transistors with 1,2,4,5-Tetrakis (tetramethylguanidino)benzene

期刊

ACS NANO
卷 12, 期 6, 页码 5895-5902

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b02061

关键词

single-walled carbon nanotube; n-type; doping; guanidino-functionalized aromatic compound; field-effect transistor; complementary inverter

资金

  1. Deutsche Forschungsgemeinschaft via the Collaborative Research Center N-Heteropolycycles as Functional Materials [SFB 1249, B03, C04, C06]

向作者/读者索取更多资源

Efficient, stable, and solution-based n-doping of semiconducting single-walled carbon nanotubes (SWCNTs) is highly desired for complementary circuits but remains a significant challenge. Here, we present 1,2,4,5-tetrakis(tetramethylguanidino)benzene (ttmgb) as a strong two-electron donor that enables the fabrication of purely n-type SWCNT field-effect transistors (FETs). We apply ttmgb to networks of monochiral, semiconducting (6,5) SWCNTs that show intrinsic ambipolar behavior in bottom-contact/top-gate FETs and obtain unipolar n-type transport with 3-5-fold enhancement of electron mobilities (approximately 10 cm(2) V-1 s(-1)), while completely suppressing hole currents, even at high drain voltages. These n-type FETs show excellent on/off current ratios of up to 108, steep subthreshold swings (80-100 mV/dec), and almost no hysteresis. Their excellent device characteristics stem from the reduction of the work function of the gold electrodes via contact doping, blocking of hole injection by ttmgb(2+) on the electrode surface, and removal of residual water from the SWCNT network by ttmgb protonation. The ttmgb-treated SWCNT FETs also display excellent environmental stability under bias stress in ambient conditions. Complementary inverters based on n- and p-doped SWCNT FETs exhibit rail-to-rail operation with high gain and low power dissipation. The simple and stable ttmgb molecule thus serves as an example for the larger class of guanidino-functionalized aromatic compounds as promising electron donors for high-performance thin film electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据