4.8 Article

Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry

期刊

ACS NANO
卷 12, 期 5, 页码 4286-4294

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b08751

关键词

solid-state battery; three-dimensional solid-state battery; conformal battery; energy storage; three-dimensional energy storage

资金

  1. Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]
  2. Research & Exploratory Development Department (REDD) of the Johns Hopkins University Applied Physics Laboratory (JHU/APL)
  3. U.S. Department of Energy's National Nuclear Security Administration [DE-NA-0003525]

向作者/读者索取更多资源

Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components-electrodes, solid electrolyte, and current collectors-were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV2O5 cathode, a very thin (40-100 nm) Li2PO2N solid electrolyte, and a SnNx anode. The fabrication process occurs entirely at or below 250 degrees C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37/ mu Ah/cm(2).mu m (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据