4.8 Article

Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 10, 页码 8739-8748

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00069

关键词

Fe-Ni phosphide; ultrathin carbon; OER; HER; organic decomposition

资金

  1. National Science Foundation [CMMI-1663509]
  2. startup funding from Department of Mechanical Engineering, Iowa State University (ISU)
  3. Catron Fellowship from the College of Engineering, ISU

向作者/读者索取更多资源

Efficiency of hydrogen evolution via water electrolysis is mainly impeded by the kinetically sluggish oxygen evolution reaction (OER). Thus, it is of great significance to develop highly active and stable OER catalyst for alkaline water electrolysis or to substitute the more kinetically demanding acidic OER with a facile electron-donating reaction such that OER is no longer the bottleneck half-reaction for either acidic or alkaline water electrolysis. Herein, the hierarchical Fe-Ni phosphide shelled with ultrathin carbon networks on Ni foam (FeNiP@C) is reported and shows exceptional OER activity and enhanced chemical stability in 1 M KOH. This unique electrode provides large active sites, facile electron transport pathways, and rapid gas release, resulting in a remarkable OER activity that delivers a current density of 100 mA/cm(2) at an overpotential of 182 mV with a Tafel slope of 56 mV/dec. Combining the hydrogen evolution reaction with organic pollutant (methylene blue) oxidation, a multifunctional electrolyzer for simultaneous cost-effective hydrogen generation and organic pollutant decomposition in acid wastewater is proposed. Our strategies in this work provide attractive opportunities in energy- and environment-related fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据