4.8 Article

Lanthanide-Doped Core-Shell-Shell Nanocomposite for Dual Photodynamic Therapy and Luminescence Imaging by a Single X-ray Excitation Source

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 9, 页码 7859-7870

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b00015

关键词

lanthanide-doped nanoparticles; photodynamic therapy; X-ray; luminescence imaging; theranostics

资金

  1. Ministry of Science and Technology of Taiwan [NSC102-2627-E-010-001, NSC102-2627-M-010-001, MOST103-2627-M-010-001, MOST104-2627-M-010-001, MOST105-2113-M-010-001, MOST106-2113-M-010-006]
  2. Veterans General Hospitals University System of Taiwan Joint Research Program, Taiwan (ROC) [VGHUST104-G7-4-1]
  3. National Yang-Ming University

向作者/读者索取更多资源

Photodynamic therapy (PDT) could be highly selective and noninvasive, with low side effects as an adjuvant therapy for cancer treatment. Because excitation sources such as UV and visible lights for most of the photosensitizers do not penetrate deeply enough into biological tissues, PDT is useful only when the lesions are located within 10 mm below the skin. In addition, there is no prior example of theranostics capable of both PDT and imaging with a single deep-penetrating X-ray excitation source. Here we report a new theranostic scintillator nanoparticle (ScNP) composite in a core shell shell arrangement, that is, NaLuF4:Gd(35%),Eu(15%)@NaLuF4:Gd(40%)@NaLuF4:Gd(35%),Tb(15%), which is capable of being excited by a single X-ray radiation source to allow potentially deep tissue PDT and optical imaging with a low dark cytotoxicity and effective photocytotoxicity. With the X-ray excitation, the ScNPs can emit visible light at 543 nm (from Tb3+) to stimulate the loaded rose bengal (RB) photosensitizer and cause death of efficient MDA-MB-231 and MCF-7 cancer cells. The ScNPs can also emit light at 614 and 695 nm (from Eu3+) for luminescence imaging. The middle shell in the core shell shell ScNPs is unique to separate the Eu3+ in the core and the Tb3+ in the outer shell to prevent resonance quenching between them and to result in good PDT efficiency. Also, it was demonstrated that although the addition of a mesoporous SiO2 layer resulted in the transfer of 82.7% fluorescence resonance energy between Tb3+ and RB, the subsequent conversion of the energy from RB to generate O-1(2) was hampered, although the loaded amount of the RB was almost twice that without the mSiO(2) layer. A unique method to compare the wt % and mol % compositions calculated by using the morphological transmission electron microscope images and the inductively coupled plasma elemental analysis data of the core, core-shell, and core-shell-shell ScNPs is also introduced.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据