4.8 Article

Fe3O4-Decorated Porous Graphene Interlayer for High-Performance Lithium-Sulfur Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 31, 页码 26264-26273

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b07316

关键词

Fe3O4 nanoparticles; porous graphene; interlayer; multifunctional; lithium-sulfur batteries

资金

  1. National Key Basic Research Program of China [2014CB932400]
  2. National Natural Science Foundation of China [U1401243]
  3. National Nature Science Foundation of China [51232005]
  4. Shenzhen Technical Plan Project [JCYJ20150529164918735, KQJSCX20160226191136, JCYJ20170412170911187, JCYJ20170817161753629]
  5. Guangdong Technical Plan Project [2015TX01N011, 2017B090907005]

向作者/读者索取更多资源

Lithium-sulfur (Li-S) batteries are seriously restrained by the shuttling effect of intermediary products and their further reduction on the anode surface. Considerable researches have been devoted to overcoming these issues by introducing carbon-based materials as the sulfur host or interlayer in the Li-S systems. Herein, we constructed a multifunctional interlayer on a separator by inserting Fe3O4 nanoparticles (NPs) in a porous graphene (PG) film to immobilize polysulfides effectively. The porous structure of graphene was optimized by controlling the oxidation conditions for facilitating ion transfer. The polar Fe3O4 NPs were employed to trap sulfur species via strong chemical interaction. By exploiting the PG-Fe3O4 interlayer with optimal porous structure and component, the Li-S battery delivered a superior cycling performance and rate capability. The reversible discharge capacity could be maintained at 732 mAh g(-1) after 500 cycles and 356 mAh g(-1) after total 2000 cycles at 1 C with a final capacity retention of 49%. Moreover, a capacity of 589 mAh g(-1) could also be maintained even at 2 C rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据