4.8 Article

Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 11, 页码 9353-9361

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b17893

关键词

sodium-ion batteries; defect; porous carbon; anode; pseudocapacitive behaviors

资金

  1. National Natural Science Foundation of China [51671140]
  2. Shanxi Scholarship Council of China [2015-034]
  3. Natural Science Foundation of Shanxi Province of China [201701D221077]
  4. Australian Research Council (ARC) [DE170100928, DP160102627, LP160100273]

向作者/读者索取更多资源

Room-temperature sodium-ion batteries have been regarded as promising candidates for grid-scale energy storage due to their low cost and the wide distribution of sodium sources. The main scientific challenge for their practical application is to develop suitable anodes with long-term cycling stability and high rate capacity. Here, novel hierarchical three-dimensional porous carbon materials are synthesized through an in situ template carbonization process. Electrochemical examination demonstrates that carbonization temperature is a key factor that affects Nation-storage performance, owing to the consequent differences in surface area, pore volume, and degree of crystallinity. The sample obtained at 600 degrees C delivers the best sodium-storage performance, including long-term cycling stability (15 000 cycles) and high rate capacity (126 mAh g(-1) at 20 A g(-1)). Pseudocapacitive behavior in the Na+-ion-storage process has been confirmed and studied via cyclic voltammetry. Full cells based on the porous carbon anode and Na3V2(PO4)(3)C- cathode also deliver good cycling stability (400 cycles). Porous carbon, combining the merits of high energy density and extraordinary pseudocapacitive behavior after cycling stability, can be a promising replacement for battery/supercapacitors hybrid and suggest a design strategy for new energy-storage materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据