4.8 Article

High-Temperature Corrosion Behavior of SiBCN Fibers for Aerospace Applications

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 23, 页码 19712-19720

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b04497

关键词

SiBCN fiber; oxidation resistivity; corrosion; combustion; aerospace applications; mechanism

资金

  1. National Natural Science Foundation of China [51203184, 51772327]

向作者/读者索取更多资源

Amorphous SiBCN fibers possessing superior stability against oxidation have become a desirable candidate for high-temperature aerospace applications. Currently, investigations on the high-temperature corrosion behavior of these fibers for the application in high-heat engines are insufficient. Here, our polymer-derived SiBCN fibers were corroded at 1400 degrees C in air and simulated combustion environments. The fibers' structural evolution after corrosion in two different conditions and the potential mechanisms are investigated. It shows that the as-prepared SiBCN fibers mainly consist of amorphous networks of SiN3C, SiN4, B-N hexatomic rings, free carbon clusters, and BN2C units. High-resolution transmission electron microscopy cross-section observations combined with energy-dispersive spectrometry/electron energy-loss spectroscopy analysis exhibit a trilayer structure with no detectable cracks for fibers after corrosion, including the outermost SiO2 layer, the h-BN grain-contained interlayer, and the uncorroded fiber core. A high percentage of water vapor contained in the simulated combustion environment triggers the formation of abundant a-cristobalite nanoparticles dispersing in the amorphous SiO2 phase, which are absent in fibers corroded in air. The formation of h-BN grains in the interlayer could be ascribed to the sacrificial effects of free carbon clusters, Si-C, and Si-N units reacting with oxygen diffusing inward, which protects h-BN grains formed by networks of B-N hexatomic rings in original SiBCN fibers. These results improve our understanding of the corrosion process of SiBCN fibers in a high-temperature oxygen- and water-rich atmosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据