4.8 Article

Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 32, 页码 27287-27296

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b08153

关键词

wet spinning; core/shell; coaxial filaments; continuous spinning; nanocellulose; water absorption; absorbent filaments

资金

  1. Jenny and Antti Wihuri foundation
  2. Business Finland through a strategic opening entitled Design Driven Value Chains in the World of Cellulose
  3. Academy of Finland's Centers of Excellence program (HYBER) [264677]

向作者/读者索取更多资源

A continuous and scalable method for the wet spinning of cellulose nanofibrils (CNFs) is introduced in a core/shell configuration. Control on the interfacial interactions was possible by the choice of the shell material and coagulant, as demonstrated here with guar gum (GG) and cellulose acetate (CA). Upon coagulation in acetone, ethanol, or water, GG and CA formed supporting polymer shells that interacted to different degrees with the CNF core. Coagulation rate was shown to markedly influence the CNF orientation in the filament and, as a result, its mechanical strength. The fastest coagulation noted for the CNF/GG core/shell system in acetone led to an orientation index of similar to 0.55 (Herman's orientation parameter of 0.40), Young's modulus of similar to 2.1 GPa, a tensile strength of similar to 70 MPa, and a tenacity of similar to 8 cN/tex. The system that underwent the slowest coagulation rate (CNF/GG in ethanol) displayed a limited CNF orientation but achieved an intermediate level of mechanical resistance, owing to the strong core/shell interfacial affinity. By using CA as the supporting shell, it was possible to spin CNF into filaments with high water absorption capacity (43 g water/g dry filament). This was explained by the fact that water (used as the coagulant for CA) limited the densification of the CNF core structure, yielding filaments with high accessible area and pore density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据