4.8 Article

In-Plane Anisotropic Photoconduction in Nonpolar Epitaxial a-Plane GaN

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 19, 页码 16918-16923

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b05032

关键词

nonpolar; molecular beam epitaxy (MBE); interdigitated electrode (IDE); gallium nitride; azimuth angle; UV detectors

向作者/读者索取更多资源

Nonpolar a-plane GaN epitaxial films were grown on an r-plane sapphire using the plasma-assisted molecular beam epitaxy system, with various nitrogen plasma power conditions. The crystallinity of the films was characterized by high-resolution Xray diffraction and reciprocal space mapping. Using the X-ray rocking curve-phi scan, [0002],[1-100], and [1-102] azimuth angles were identified, and interdigitated electrodes along these directions were fabricated to evaluate the direction-dependent UV photoresponses. UV responsivity (R) and internal gain (G) were found to be dependent on the azimuth angle and in the order of [0002] > [1-102] > [1-100], which has been attributed to the enhanced crystallinity and lowest defect density along [0002] azimuth. The temporal response was very stable irrespective of growth conditions and azimuth angles. Importantly, response time, responsivity, and internal gain were 210 ms, 1.88 A W-1, and 648.9%, respectively, even at a bias as low as 1 V. The results were validated using the Silvaco Atlas device simulator, and experimental observations were consistent with simulated results. Overall, the photoresponse is dependent on azimuth angles and requires further optimization, especially for materials with in-plane crystal anisotropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据