4.8 Article

On the Generalized Thermal Conductance Characterizations of Mixed One-Dimensional Two-Dimensional van der Waals Heterostructures and Their Implication for Pressure Sensors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 10, 期 16, 页码 14221-14229

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b03752

关键词

mixed-dimensional heterostructure; thermal conductance; mechanical deformation; pressure sensor

资金

  1. John Bell McGaughy Graduate Fellowship at the University of Virginia

向作者/读者索取更多资源

The emergence of ever-growing two-dimensional (2D) materials has made revolutionary innovations on van der Waals (vdW) heterostructural designs by integrating them with other low-dimensional materials to achieve unprecedented and/or multiple functionalities that are beyond individual components. Guided by full-scale molecular dynamics simulations, we present a mixed-dimensional heterostructure by vertically stacking one-dimensional (1D) and 2D materials through noncovalent vdW interactions and demonstrate that the thermal conductance can be generalized into a unified model by incorporating their mechanical properties and geometric features. Simulation analyses further reveal the strong dependence of thermal conductance on the location and magnitude of an external pressure loading applied to the local vdW heterojunctions. The underlying thermal transport mechanism is uncovered through the elucidation of the mechanical deformation, curvature morphology, and density of atomic interactions at the heterojunctions. A proof-of-conceptual design of such a heterostructure-enabled pressure sensor is explored by utilizing the unique response of thermal transport to mechanical deformation at heterojunctions. These designs and models are expected to broaden the applications and functionalities of mixed-dimensional heterostructures and will also offer an alternative strategy to leverage thermal transport mechanisms in the design of high-performance vdW heterostructure-enabled sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据