4.2 Article

SCORE Allocations for Bi-objective Ranking and Selection

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3158666

关键词

Multi-objective simulation optimization; ranking and selection

资金

  1. National Science Foundation [CMMI-1554144]

向作者/读者索取更多资源

The bi-objective ranking and selection (R&S) problem is a special case of the multi-objective simulation optimization problem in which two conflicting objectives are known only through dependent Monte Carlo estimators, the decision space or number of systems is finite, and each system can be sampled to some extent. The solution to the bi-objective R&S problem is a set of systems with non-dominated objective vectors, called the set of Pareto systems. We exploit the special structure of the bi-objective problem to characterize the asymptotically optimal simulation budget allocation, which accounts for dependence between the objectives and balances the probabilities associated with two types of misclassification error. Like much of the R&S literature, our focus is on the case in which the simulation observations are bivariate normal. Assuming normality, we then use a certain asymptotic limit to derive an easily-implementable Sampling Criteria for Optimization using Rate Estimators (SCORE) sampling framework that approximates the optimal allocation and accounts for correlation between the objectives. Perhaps surprisingly, the limiting SCORE allocation exclusively controls for misclassification-by-inclusion events, in which non-Pareto systems are falsely estimated as Pareto. We also provide an iterative algorithm for implementation. Our numerical experience with the resulting SCORE framework indicates that it is fast and accurate for problems having up to ten thousand systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据