4.8 Review

Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 51, 期 2, 页码 299-308

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.7b00482

关键词

-

资金

  1. National Science Foundation [CBET-1605126]

向作者/读者索取更多资源

CONSPECTUS: Undesired reactions at the interface between a transition metal oxide cathode and a nonaqueous electrolyte bring about challenges to the performance of Li-ion batteries in the form of compromised durability. These challenges are especially severe in extreme conditions, such as above room temperature or at high potentials. The ongoing push to increase the energy density of Li-ion batteries to break through the existing barriers of application in electric vehicles creates a compelling need to address these inefficiencies. This goal requires a combination of deep knowledge of the mechanisms underpinning reactivity, and the ability to assemble multifunctional electrode systems where different components synergistically extend cycle life by imparting interfacial stability, while maintaining, or even increasing, capacity and potential of operation. The barriers toward energy storage at high density apply equally in Li-ion, the leading technology in the battery market, and in related, emerging concepts for high energy density, such as Na-ion and Mg-ion, because they also conceptually rely on electroactive transition metal oxides. Therefore, their relevance is broad and the quest for solutions inevitable. In this Account, we describe mechanisms of reaction that can degrade the interface between a Li-ion battery electrolyte and the cathode, based on an oxide with transition metals that can reach high formal oxidation states. The focus is placed on cathodes that deliver high capacity and operate at high potential because their development would enable Li-ion battery technologies with high capacity for energy storage. Electrode-electrolyte instabilities will be identified beyond the intrinsic potential windows of stability, by linking them to the electroactive transition metals present at the surface of the electrode. These instabilities result in irreversible transformations at these interfaces, with formation of insulating layers that impede transport or material loss due to corrosion. As a result, strategies that screen the reactive surface of the oxide, while reducing the transition metal content by introducing inactive ions emerge as a logical means toward interfacial stability. Yet they must be implemented in the form of thin passivating barriers to avoid unacceptable losses in storage capacity. This Account subsequently describes our current ability to build composite structures that include the active material and phases designed to address deleterious reactions. We will discuss emerging strategies that move beyond the application of such barriers on premade agglomerated powders of the material of interest. The need for these strategies will be rationalized by the goal to effectively passivate all interfaces while fully controlling the chemistry that results at the surface and its homogeneity. Such outcomes would successfully minimize interfacial losses, thereby leading to materials that exceed the charge storage and life capabilities possible today. Practically speaking, it would create opportunities to design batteries that break the existing barriers of energy density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据