4.4 Article

Reconfinement and loss of stability in jets from active galactic nuclei

期刊

NATURE ASTRONOMY
卷 2, 期 2, 页码 167-171

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41550-017-0338-3

关键词

-

资金

  1. Science and Technology Facilities Council [ST/N000676/1]
  2. STFC [ST/S002529/1, ST/M006948/1, ST/R001014/1, ST/K000373/1, ST/P002307/1, ST/N000676/1, ST/K000853/1, ST/R002363/1] Funding Source: UKRI
  3. Science and Technology Facilities Council [ST/N000676/1] Funding Source: researchfish

向作者/读者索取更多资源

Jets powered by active galactic nuclei appear impressively stable compared with their terrestrial and laboratory counterparts-they can be traced from their origin to distances exceeding their injection radius by up to a billion times(1,2). However, some less energetic jets get disrupted and lose their coherence on the scale of their host galaxy(1,3). Quite remarkably, on the same scale, these jets are expected to become confined by the thermal pressure of the intra-galactic gas(2). Motivated by these observations, we have started a systematic study of active galactic nuclei jets undergoing reconfinement via computer simulations. Here, we show that in the case of unmagnetized relativistic jets, the reconfinement is accompanied by the development of an instability and transition to a turbulent state. During their initial growth, the perturbations have a highly organized streamwise-oriented structure, indicating that it is not the Kelvin-Helmholtz instability, the instability which has been the main focus of the jet stability studies so far(4,5). Instead, it is closely related to the centrifugal instability(6). This instability is likely to be behind the division of active galactic nuclei jets into two morphological types in the Fanaroff-Riley classification(7).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据