4.8 Article

Topology optimization of 3D self-supporting structures for additive manufacturing

期刊

ADDITIVE MANUFACTURING
卷 12, 期 -, 页码 60-70

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addma.2016.06.010

关键词

Topology optimization; Additive manufacturing; Overhang angle; Self-supporting designs; Manufacturing restrictions

向作者/读者索取更多资源

The potential of topology optimization to amplify the benefits of additive manufacturing (AM), by fully exploiting the vast design space that AM allows, is widely recognized. However, existing topology optimization approaches do not consider AM-specific limitations during the design process, resulting in designs that are not self-supporting. This leads to additional effort and costs in post-processing and use of sacrificial support structures. To overcome this difficulty, this paper presents a topology optimization formulation that includes a simplified AM fabrication model implemented as a layerwise filtering procedure. Unprintable geometries are effectively excluded from the design space, resulting in fully self-supporting optimized designs. The procedure is demonstrated on numerical examples involving compliance minimization, eigenfrequency maximization and compliant mechanism design. Despite the applied restrictions, in suitable orientations fully printable AM-restrained designs matched the performance of reference designs obtained by conventional topology optimization. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据