4.4 Article

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm

期刊

FRONTIERS IN ENERGY
卷 14, 期 1, 页码 139-151

出版社

HIGHER EDUCATION PRESS
DOI: 10.1007/s11708-017-0484-4

关键词

PV-wind-battery hybrid system; size optimization; genetic algorithm

向作者/读者索取更多资源

In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery's state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据