4.6 Article

Cubic scaling GW: Towards fast quasiparticle calculations

期刊

PHYSICAL REVIEW B
卷 94, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.94.165109

关键词

-

资金

  1. China Scholarship Council (CSC)-Austrian Science Fund (FWF) Scholarship
  2. FWF within the SFB ViCoM [F 41]
  3. Deutsche Forschungsgemeinschaft [FOR 1346, I597-N16]
  4. FWF [FOR 1346, I597-N16]
  5. European Union [658705]
  6. Marie Curie Actions (MSCA) [658705] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scalingGW implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele's reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO3). The results are compared with conventional GW calculations. Good agreement is achieved, highlighting the strength of the present method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据