4.1 Article

Switchgrass PvDREB1C plays opposite roles in plant cold and salt tolerance in transgenic tobacco

期刊

HEREDITAS
卷 155, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s41065-017-0050-4

关键词

Switchgrass; DREB/CBF; Dual function; Cold; Salt; Stress

资金

  1. Fundamental Research Funds for the Central Universities [KYZ201552]
  2. Student Research Training project [201610307018Y]

向作者/读者索取更多资源

Background: The C-repeat-binding factors/DRE-binding factors (CBF/DREBs) comprise a key transcription factor family involved in plant stress tolerance. Yet, there is limited information about switchgrass DREB genes and their functional roles. Results: In this study, four cold-inducible PvDREB1s were identified from switchgrass (Panicum virgatum), among which PvDREB1C was the one responded to cold stress later than the other three PvDREB1s. Yet, ectopic overexpression of PvDREB1C led to significantly compromised, instead of improved cold tolerance in transgenic tobacco. On the other hand, PvDREB1C was transcriptionally down-regulated in response to salt stress, but overexpression of PvDREB1C improved plant salt tolerance in transgenic tobacco. The improved salt tolerance was associated with increased K+/Na+ ratio and Ca2+ content, higher cellular osmotic potential, and activation of stress-related functional genes in the leaves of transgenic plants under salt stress. Conclusions: The current results implied that PvDREB1C played opposite roles in plant cold and salt tolerance. Although DREB1s were known as positive stress regulators, particular attentions shall be paid to their potential negative regulatory role(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据