4.7 Article

Functional diversity in a fragmented landscape - Habitat alterations affect functional trait composition of frog assemblages in Madagascar

期刊

GLOBAL ECOLOGY AND CONSERVATION
卷 10, 期 -, 页码 173-183

出版社

ELSEVIER
DOI: 10.1016/j.gecco.2017.03.005

关键词

Functional clustering; Functional beta-diversity; Ecosystem processes; Ecosystem functioning; Rainforest fragmentation; Amphibian conservation

资金

  1. Deutsche Forschungsgemeinschaft [GL 665/1-1, RO 3064/21]
  2. Madagascar National Parks [017/033/10/MEF/SG/DGF/DCD.SAP/SLRSE, 03/004/11/MEF/SG/DGF/DCD.SAP/SCB, 045/047/12//MEF/SG/DGF/DCD.SAP/SCB, 115 N-EA06/MG10, 072/079N-EA06/MG11, 044 N-EA04/MG12]
  3. Ministere de l'Environnement, de l'Ecologie, de la Mer et des Forets [017/033/10/MEF/SG/DGF/DCD.SAP/SLRSE, 03/004/11/MEF/SG/DGF/DCD.SAP/SCB, 045/047/12//MEF/SG/DGF/DCD.SAP/SCB, 115 N-EA06/MG10, 072/079N-EA06/MG11, 044 N-EA04/MG12]

向作者/读者索取更多资源

Anthropogenic habitat alterations cause biodiversity loss, which in turn negatively affects ecosystem functioning and services, and thus human well-being. To be able to consider ecosystem functioning in conservation actions, analyzing the effects of habitat alteration on functional diversity is essential. Some altered habitats can maintain a significant part of regional biodiversity, however, functional diversity information in altered habitats is so far mostly lacking. We compared functional richness and functional beta-diversity based on resource-use traits of frogs between three land-use categories in a rainforest ecosystem in Madagascar. Land-use categories represent a habitat alteration gradient ranging from continuous forest over forest fragments to matrix habitats including different agricultures. Our study revealed distinct changes in resource-use trait composition and complex patterns in the relationship between species richness and functional richness. Thus, the functional structure of frog assemblages changed due to habitat alterations. However, altered habitats likely provide different, rather than fewer functions compared to intact forest. Streams in all land-use categories were the functionally richest habitats, and thus important for ecosystem functioning. Species richness was one, but not the only driver of functional richness in our system. Functional clustering, potentially due to environmental filters depending on resource availability, was caused by anthropogenic and natural drivers. Our study shows that, even in systems where fragmented landscapes still maintain high species diversity, functional diversity can be altered in human altered habitats, which may affect ecosystem processes like productivity, nutrient cycling, and energy flows. (C) 2017 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据